Math 564: Advance Analysis 1
Lecture 22
Whisgee ditl. for singalar measheses, For each Bonel weasure μ on \mathbb{P}^{d} that's $\underbrace{\text { tinite on coupcet sets, if }} \mu \perp \lambda$, then for λ-a.e. $x \in \mathbb{R}^{d}$,

$$
\operatorname{locall}_{y} \text { firite } \lim _{r \rightarrow 0} \frac{g\left(\tilde{B}_{r}(x)\right)}{\lambda\left(\tilde{B}_{c}(x)\right)}=0 \text {, }
$$

for any tanils $\left\{\tilde{B}_{r}(k)\right\}$, Uast sheinks λ-niely to x.
Proof. It is arough to prove for balls becanse if $p \in(0,1)$ is s.t. $\lambda\left(\tilde{B}_{r}(x)\right) \geqslant p \lambda\left(B_{r}(k)\right)$

$$
\forall c>0 \text {, hace } \frac{\mu\left(\tilde{B}_{r}(x)\right)}{\lambda\left(\tilde{B}_{r}(x)\right)} \leqslant \frac{\mu\left(B_{r}(x)\right)}{p \cdot \lambda\left(B_{1}(x)\right)} \rightarrow 0 \text { as } r \rightarrow 0
$$

Lt $\mathbb{R}^{d}=X_{\lambda} \cup X_{\mu}$ be a Borel partition s.t. X_{λ} is λ-conull and X_{μ} is s'comull.
If is enough to show that the sets

$$
Z_{\alpha}:=\left\{x \in X_{\lambda}: \operatorname{limscap}_{r \rightarrow 0} \frac{\mu\left(B_{r}(x)\right)}{\lambda\left(B_{r}(x)\right)}>\alpha\right\}
$$

are λ-unll beace $\bigcup_{\alpha>0} Z_{\alpha}=\bigcup_{n \in \mathbb{N}_{1}} Z_{1 / n}$. We shom the $\lambda\left(Z_{\alpha}\right)<\varepsilon, \forall \varepsilon>0$.
By regularity of g^{\prime}, \exists open $U_{\geq} Z_{\alpha}$ s.t. $\mu(u)<\varepsilon$. $\forall x \in Z_{\alpha} \exists$ open ball $B_{x} \subseteq U$ s.t. $\frac{1}{\alpha} y^{\prime}\left(B_{x}\right)>\lambda\left(B_{x}\right)$. Lettimy $U^{\prime}:=\bigcup_{x \in Z_{\alpha}} B_{x}$, a still have $U \geqslant U^{\prime} \geqslant Z_{\alpha}$, so assame WLOC Wt $U=U^{\prime}$. By Vitalli covering, \forall positive $c<\lambda(u), \exists$ fin. many pairwise disjoint balls $B_{x_{1}}, B_{x_{2}}, \ldots, B_{x_{n}}$, i,t.

$$
c \leqslant 3^{d} \sum_{i=1}^{n} \lambda\left(B_{x_{i}}\right)<3^{d} \frac{1}{\alpha} \sum_{i=1}^{n} \mu\left(B_{x_{i}}\right) \leqslant 3^{d} \frac{1}{\alpha} \cdot \mu(u)<\frac{3^{d}}{\alpha} \cdot \varepsilon
$$

Thas, letting c> $\lambda(u)$, u get $\lambda(u)<\frac{3^{d}}{2} \cdot \varepsilon$. Tus, $\lambda\left(z_{\alpha}\right)<\frac{3^{d}}{2} \cdot \varepsilon \rightarrow 0$ as $\{\rightarrow 0$!

Cor. Let μ be ang loc. tinite Bore (measwe on \mathbb{R}^{d}. Ran for λ-a.e. $x \in \mathbb{R}^{d}$,
$\lim _{r \rightarrow 0} \frac{\mu\left(\widetilde{B}_{r}(x)\right)}{\lambda\left(\widetilde{B}_{r}(x)\right)}=\frac{\lambda J_{k \lambda}}{d \lambda}$, there $\quad \mu=\mu_{\ll \lambda}+j_{L \lambda}$ is lebesgue dec of μ ret λ, ie. $\mu_{* \lambda} \ll \lambda$ al $J_{\perp \lambda} \perp \lambda$, and $\left\{\tilde{B}_{1}(x)\right\}_{r>0}$ shrinks λ-nicely to x.

Bore measures on \mathbb{R} and the Fandcuantal Theorem of Calculus (FTC).
We saw in H(W Ret if a measure μ on \mathbb{R} is given by a countinunasly diff function f, i.e. $\mu((a, b))=f(b)-f(a)$, the $\mu_{\ll} \lambda$ and $\frac{d \mu}{d \lambda}=f^{\prime}$.
This happens in general:
Cor. Let μ be a los. Fin. Bored measure on \mathbb{R} al let t be an associated distribution function, iss. $\mu((a, b))=f(b)-f(c) \quad \forall a<b$. Then f^{\prime} exists are. and is in $l_{\text {loco }}^{1}$. In fact, $f^{\prime}=\frac{d J_{\ll \lambda}}{d}$. Thus:
(i) $\mu^{\mu} \ll \lambda$ if and only if the FTC holds for f, ie. $\forall a<b \quad d \lambda$

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime} d \lambda .
$$

(ii) $\mu \perp \lambda$ if and only if $f^{\prime}=0$ a.e.

Proof. For each $x \in \mathbb{R}, f^{\prime}(x):=\lim _{r \rightarrow 0} \frac{f(x+r)-f(x)}{r}$. To chow that this limit exists it is enough do $r \rightarrow 0$ chow $K A \quad \lim _{r \rightarrow 0^{+}} \frac{f(x+r)-f(x)}{r}=\frac{d \rho_{<x \lambda}}{d \lambda}$
and $\lim ^{\prime} f(x)-f(x-r)=d \mu_{\ll \lambda}$. and $\lim _{r \rightarrow 0^{+}} \frac{f(x)-f(x-r)}{r}=\frac{d \mu^{\mu}}{d \lambda}$.
But the family $([x, x+r])_{r>0}$ shrines λ-nicely to x and the family $(\mid x-r, x])_{r>0}$ also striates λ-nicely fo x, so for λ-ace. x, both of these limits exists and ane egad to $d y_{<i \lambda}^{\mu} / d \lambda l_{s}$ the previous corollary. Indeed, $\frac{f(x+c)-f(x)}{r}=\frac{\mu((x, x+r])}{\lambda((x, x+r])}$ and

$$
\frac{f(x-r)-f(x)}{r}=\frac{\mu((x-r, x])}{x((x-c, x])} .
$$

For (i), we have $\mu_{\ll \lambda} \Leftrightarrow \quad \mu=\mu_{\ll \lambda} \Leftrightarrow \forall a<b \quad \mu((a, b])=\int_{a}^{b} \frac{d \mu}{d \lambda} d \lambda$ $\Leftrightarrow \forall a<b \quad f(b)-f(a)=\int_{a}^{b} f^{\prime} d \lambda$.
For $(i i), \quad \mu \perp \lambda \Leftrightarrow j_{\mu \lambda}=0 \Leftrightarrow \frac{d \mu_{\mu \lambda}^{\mu}}{d \lambda}=0$ are. $\Leftrightarrow f^{\prime}=0$ a.e.
Erangle of $\mu \perp \lambda$: the devil's staircase. let $C \leq[0,1]$ the standard Cantor set, $C:=[0,1] \backslash U$, where $U=\sqcup I_{s}$, where each $I_{s}=(0 .(2 s) 1,0 .(2 s) 2)$, where $(2 s)=\left(2 s_{0}\right)\left(2 s_{1}\right)\left(2 s_{2}\right)^{s \in 2^{2 N}\left(2 s_{\text {aa }(s)-1}\right)}$, ice. replace all $1 s$ in S with $2 s$, there the umber s are in tecuary rep. E.g. $(0.7,0.2)=\left(\frac{1}{3}, \frac{2}{3}\right)$, $(0.01,0.02)=\left(\frac{1}{9}, \frac{2}{9}\right),(0,11,0.12)=\left(\frac{4}{9}, \frac{2}{3}\right)$.
Identifying C with $2^{\mathbb{N}}$, let μ be the Bernoulli $\left(\frac{1}{2}\right)$ measure on C. What is the corresponding distribution function $f:[0,1) \rightarrow \mathbb{R}$, with $f(0)=0$? We kw t is increasing and woodiunous becase μ is atoweless.

We also know lit $\mathrm{fl}_{I_{s}}$ is wastact,
 in fad, $\left.f\right|_{I_{s}} \equiv 0.51$ in binary. Mus we know the def of for U, and one can verity NA $_{\text {all }}$ is Lipschite, hence weitoruls coatin nous, hance cxtenuls cationonsly to the whole $[0,1]$.
The explicit definition of $f(x)$ is as follows: write x in ternary, favouring 1, ie. $0.021000 \ldots$
as opposed to $0.02022227 \ldots$ Then remove all digits offer the fist 1 (if such exists) and change all $2 s$ ho $1 s$. Mat wive obtained is the bines rep of $f(x)$.
Incleed $\forall x \in U, f^{\prime}(x)=0$ lease f is locally natant at x, al $[0, T \backslash U$ is λ-all, hence $f^{\prime}=0$ a.e. yet f is not constant.

